Cartan - decomposition subgroups of SU ( 2 , n )

نویسندگان

  • Alessandra Iozzi
  • Dave Witte
چکیده

We give explicit, practical conditions that determine whether or not a closed, connected subgroup H of G = SU(2, n) has the property that there exists a compact subset C of G with CHC = G. To do this, we fix a Cartan decomposition G = KA + K of G, and then carry out an approximate calculation of (KHK) ∩ A + for each closed, connected subgroup H of G. This generalizes the work of H. Oh and D. Witte for G = SO(2, n).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Scheme of Cartan Decomposition for su(N)

A scheme to perform the Cartan decomposition for the Lie algebra su(N) of arbitrary finite dimensions is introduced. The scheme is based on two algebraic structures, the conjugate partition and the quotient algebra, that are easily generated by a Cartan subalgebra and generally exist in su(N). In particular, the Lie algebras su(2) and every su(2 < N < 2p) share the isomorphic structure of the q...

متن کامل

ar X iv : q ua nt - p h / 05 05 12 8 v 2 1 6 A ug 2 00 5 A constructive algorithm for the Cartan decomposition of SU ( 2 N )

We present an explicit numerical method to obtain the Cartan-KhanejaGlaser decomposition of a general element G ∈ SU(2 ) in terms of its ‘Cartan’ and ‘non-Cartan’ components. This effectively factors G in terms of group elements that belong in SU(2) with n < N , a procedure that an be iterated down to n = 2. We show that every step reduces to solving the zeros of a matrix polynomial, obtained b...

متن کامل

ar X iv : q ua nt - p h / 05 05 12 8 v 1 1 7 M ay 2 00 5 A constructive algorithm for the Cartan decomposition of SU ( 2 N ) Henrique

We present an explicit numerical method to obtain the Cartan-KhanejaGlaser decomposition of a general element G ∈ SU(2 ) in terms of its ‘Cartan’ and ‘non-Cartan’ components. This effectively factors G in terms of group elements that belong in SU(2) with n < N , a procedure that an be iterated down to n = 2. We show that every step reduces to solving the zeros of a matrix polynomial, obtained b...

متن کامل

Cartan-decomposition Subgroups of So(2, N)

For G = SL(3, R) and G = SO(2, n), we give explicit, practical conditions that determine whether or not a closed, connected subgroup H of G has the property that there exists a compact subset C of G with CHC = G. To do this, we fix a Cartan decomposition G = KA + K of G, and then carry out an approximate calculation of (KHK) ∩ A + for each closed, connected subgroup H of G.

متن کامل

Note on the Khaneja Glaser decomposition

Recently, Vatan and Williams utilize a matrix decomposition of SU(2n) introduced by Khaneja and Glaser to produce CNOT-efficient circuits for arbitrary three-qubit unitary evolutions. In this note, we place the Khaneja Glaser Decomposition (KGD) in context as a SU(2n) = KAK decomposition by proving that its Cartan involution is type AIII, given n ≥ 3. The standard type AIII involution produces ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000